If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x^2-120=0
a = 1; b = 1; c = -120;
Δ = b2-4ac
Δ = 12-4·1·(-120)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{481}}{2*1}=\frac{-1-\sqrt{481}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{481}}{2*1}=\frac{-1+\sqrt{481}}{2} $
| 9v-2=5(v-6) | | -2(x+4)=-5(x+2) | | 12x+8-4=11x+4 | | 11/2r-2/3r=3/2 | | -2(k-1=4K-3 | | -2(x+4)=-5(x-2) | | x+2x+4=94 | | 4x=25+75 | | 1/3+2/k=13/3k | | 3t–4t=-9 | | x2+8x+3=0 | | f×-12.3=-73.8 | | 4x-10=x-8 | | x/4+7=9-x/4 | | -2x+8-4x=-2(3x-4) | | -4w+28=2(w+5) | | -d–112=3 | | -7(x)=2x+8. | | 9w=8w–16 | | 6x+14=-26=2x | | 7x2+6=13 | | 8d=8 | | 4x+9-7x=3x-3 | | -7x+5(x+5)=19 | | 16-2x=5+2x | | 24=3(d+6) | | 10^x=28 | | 10=2m-5m-2 | | F(x)=x2-3x-6 | | 3(w+2)-w=2(w-1)+2 | | 13y=5y+48 | | -5x+8=5x+2 |